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Abstract

Succinct zero-knowledge proofs verification on the Bitcoin L1 has long been considered unfeasible
due to the limitations of the existing Bitcoin Script language. Specifically, the absence of covenants,
such as CAT , CT V , CSF S (and a small upper limit on the script size), has prevented the
implementation of Merkle tree paths verification required for FRI/LPC-alike commitment schemes
commitments verification along with arithmetization definitions computations requiring OP _MUL to
be enabled. Despite various proposals (e.g. BIP-347) to re-enable or introduce new covenant opcodes,
these changes have not been adopted, leaving ZKP verification on the Bitcoin L1 an unresolved challenge.

This paper proposes using Bitcoin PIPEs for verifying ZKPs on the Bitcoin L1 - an approach to
enable a Polynomial Inner Product Encryption (PIPE)-based SNARK verification on Bitcoin (starting
with Placeholder proof system [1]) with (i) emulating abscent covenants (e.g. CAT ) through the
usage of Bitcoin PIPEs framework and (ii) by introducing Bitcoin PIPE for Placeholder proof system
verification itself (effectively introducing the Placeholder verification FH-MIPE-based covenant opcode
with this). The method proposed involves generating unique keys and signatures that are conditionally
valid based on the satisfaction of Placeholder proof conditions. This approach not only overcomes the
current limitations of Bitcoin Script but also opens up new possibilities for implementing new kinds
of applications on the Bitcoin L1 (via application-specific Bitcoin PIPEs covenants) alongside true
Bitcoin zkRollups.

1 Introduction

Zero-Knowledge Proofs verification on the Bitcoin L1 has long been considered unfeasible due to
the limitations of the existing Bitcoin Script language. Specifically, the absence of covenants, such as
CAT , CTV , CSFS (and a small upper limit on the script size), has prevented the implementation of
Merkle tree paths verification required for FRI/LPC-alike commitment schemes commitments verification
along with arithmetization definitions computations requiring OP_MUL to be enabled. Despite various
proposals (e.g. BIP-347) to re-enable or introduce new covenant opcodes, these changes have not been
adopted (yet?), leaving ZKP verification on the Bitcoin L1 an unresolved challenge.

The obvious solution to this problem is to upgrade Bitcoin’s protocol, to introduce (or re-introduce)
absent opcodes. This unfortunately leads to the necessity to achieve social consensus, which is a quite
complicated process. This means that the next solution in line is to emulate covenants necessary for
particular application.

This paper proposes an approach to (i) define application-specific covenants on Bitcoin by leveraging
FH-MIPE predicates and (ii) enable a hash-based commitment scheme (LPC) proof system (Placeholder[1])
proofs verification on the Bitcoin L1 via (i) emulating abscent covenants (e.g. CAT ) through the use
of Function Hiding Multi-Input Predicate Encryption (FH-MIPE) and (ii) by introducing FH-MIPE
predicate-defined Placeholder verification covenant (effectively introducing the Placeholder verification
covenant opcode with this). The method proposed involves generating unique keys and signatures that
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are conditionally valid based on the satisfaction of Placeholder proof conditions. This approach not only
overcomes the current limitations of Bitcoin Script but also opens up new possibilities for implementing
new kinds of applications on the Bitcoin L1 (via application-specific FH-MIPE covenants) alongside with
true Bitcoin zkRollups.

2 Preliminaries

2.1 Covenants

Covenants are restrictions on Bitcoin transactions. They define rules about where and how Bitcoin
can be spent, adding a layer of programmability to Bitcoin transactions. Covenants are not currently part
of Bitcoin’s native functionality and require the community to agree on and implement specific upgrades.
Several notable attempts were made recently to introduce controversial covenants opcodes (without any
luck for now unfortunately):

1. CheckTemplateVerify (CTV): CTV is a covenant which only allows the exact next transaction
to be executed. It allows a user to commit to a specific transaction by ensuring that only the hash
of that transaction matches a predefined value. It was proposed back in 2020 and got assigned
BIP-119.

2. Concatenation (CAT): CAT operation is crucial for more advanced covenants. It concatenates
two data items on the stack, enabling more complex scripts and conditions. For instance, CAT can
be used to implement covenants that check multiple conditions on Bitcoin being spent, allowing for
a broader range of transaction types and restrictions.
CAT ’s significance lies in its ability to support complex Bitcoin Script operations that go beyond
simple locking and unlocking scripts. This makes it possible to create more sophisticated covenants
that can enforce a wide variety of spending conditions.
In particular CAT can help construct Merkle trees for verifying commitments of hash-based
commitment scheme-based proof systems proofs within Bitcoin script natively.
There were also a BIP introduced to reflect CAT : BIP-347.

2.1.1 Covenants: CAT

The absence of concatenation covenant (expressed in an OP_CAT opcode) in Bitcoin has made certain
operations cumbersome or impossible. OP_CAT is essential for efficient Merkle tree operations for verifying
commitments. Without OP_CAT, simulating its functionality requires cumbersome workarounds that are
often impractical. The re-enabling of OP_CAT would simplify these operations and make Bitcoin scripts
more powerful and flexible.

The re-enabling of OP_CAT has been positively received by the Bitcoin community, with several
proposals and discussions taking place to bring it back. The draft BIP-347 (https://github.com/
bitcoin/bips/blob/master/bip-0347.mediawiki) for OP_CAT has undergone several iterations, and its
implementation in Bitcoin Core is actively being discussed. Re-enabling OP_CAT would require a soft fork,
which, if successful, would mark a significant enhancement in Bitcoin’s scripting capabilities.

The progress towards re-enabling OP_CAT is promising, with discussions and reviews happening in
bitcoin-dev mailing list. The potential activation of OP_CAT would enable more advanced scripts and
applications on Bitcoin, paving the way for Turing-complete applications and improved functionality.

2.1.2 Bitcoin-friendly Proof Systems

To verify zero-knowledge proofs on Bitcoin, the proof system must be efficient and fit within Bitcoin’s
constraints. A Bitcoin-friendly proof system should minimize the weight units used in the script, stay
within stack limits, and utilize existing opcodes like hash functions to reduce computational costs. Hash-
based commitment scheme-enabled proof systems, such as Placeholder, are more likely to be compatible
with Bitcoin due to their reliance on hash functions and a more ofter usage of smaller prime fields.
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By leveraging recursive verification and optimizing for Bitcoin’s limitations, it is possible to create proof
systems that are both efficient and practical for on-chain verification. The combination of OP_CAT and
efficient proof systems can enable powerful and flexible covenants, enhancing Bitcoin’s programmability
and privacy features.

Unfortunately, OP_CAT being enabled will take time. This means to unlock Bitcoin native SNARK
verification, we need to emulate missing covenants and use a hash-based commitment scheme-enabled
proof system to enable the verificaiton without the upgrade.

2.2 Placeholder Proof System

Placeholder [1] is a zero-knowledge succinct non-interactive argument of knowledge based on PlonK-
style arithmetization. Placeholder’s commitment scheme and types of arithmetization, are replaceable
and configurable. Low-level Placeholder circuits can adapt to selected parameters, such as table size,
date degree, and lookup options. These properties enable the flexible configuration of Placeholder with
trade-offs between circuit parameters, trust assumptions, and efficiency of proof generation. Due to this
flexibility, Placeholder can accommodate particular cases, consistently achieving efficient results.

zkSNARK is a type of zero-knowledge proof system that allows one to prove the authenticity of a
statement to a verifier without revealing any additional information beyond the statement’s validity. The
"succinct" and "non-interactive" aspects of zk-SNARKs refer to the fact that the proof is short and does
not require any interaction between the prover and verifier beyond the initial setup.

Conceptually, general SNARK construction contains three steps:

1. Translate the problem into a set of polynomials.

2. Commit the polynomials.

3. Prove some relations on the committed polynomials.

Placeholder follows this general SNARK construction and contains two main modules:

1. Arithmetization: Defines the arithmetic representation of the proving statement. Placeholder uses
PlonK-based representation with custom gates. The idea was introduced in the TurboPLONK paper
[2] and modified later in other proof systems like Halo2 [3] and Kimchi.

2. Commitment Scheme: Placeholder uses the List Polynomial Commitment scheme ([4], [1]) for
polynomials obtained from the arithmetization procedure.

Because of the use of List Polynomial Commitment (LPC), Placeholder is positioned as a perfect proof
system to be verified on Bitcoin.

But the problem is that even this method doesn’t guarantee the so-called "pessimistic" verification on
Bitcoin because of commitments-only check being possible. To verify the circuit part, it is required to
introduce OP_MUL and a larger acceptable script size which requires Bitcoin protocol upgrade. This means
a different method should be introduced and it is required to emulate all the following at once:

1. Missing covenants (e.g. CAT )

2. Missing opcodes (e.g. OP_MUL)

3. Larger script size

2.3 Functional Encryption

Functional Encryption (FE) is a technique that allows computation over encrypted data to yield
decrypted results. It supports restricted secret keys that enable a key holder to learn a specific function
of the encrypted data, without learning anything else about the data. For example, given an encrypted
program, the secret key may enable the key holder to learn the output of the program on a specific input
without learning anything else about the program.
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The concept of Functional Encryption was formally studied by Boneh, Sahai, and Waters in [5], who
provided precise definitions and discussed its security challenges. The security of FE is non-trivial to
define; a natural game-based definition is inadequate for some functionalities, leading to a simulation-based
definition, which, while provably secure in the random oracle model, cannot be satisfied in the standard
model.

In a functional encryption system, a decryption key allows a user to learn a function of the encrypted
data. Briefly, in an FE system for functionality F (·, ·) (modeled as a Turing Machine), an authority
holding a master secret key can generate a key skk that enables the computation of the function F (k, ·)
on encrypted data. More precisely, using skk, the decryptor can compute F (k, x) from an encryption of x.
The security of the system guarantees that one cannot learn anything more about x.

An FE scheme for a functionality F is a tuple of four polynomial-time algorithms: setup, keygen, enc,
and dec, satisfying the following correctness condition for all k in the key space K and x in the plaintext
space X:

1. (pp, mk)← setup(1λ) (generate a public and master secret key pair)

2. sk ← keygen(mk, k) (generate secret key for k)

3. c← enc(pp, x) (encrypt message x)

4. y ← dec(sk, c) (use sk to compute F (k, x) from c)

The output y should equal F (k, x) with probability 1.
Standard public-key encryption is a simple example of functional encryption where K = {1, ϵ} and

F (k, x) = x if k = 1 and F (k, x) = len(x) if k = ϵ.

2.4 Function-Hiding Inner Product Encryption

Besides many different kinds of FE schemes out there, as reported in [6], in many real scenarios it
is important to consider also the privacy of the computed function. The motivation behind this is the
fact that a typical workflow of a Bitcoin transaction involves techniques around manipulating pre-signed
transactions (or an encrypted signing key) which, if being revealed not in the right moment, would break
the whole protocol. If the FE scheme in use does not guarantee any hiding of the function (which is the
case for many existing FE schemes), then a hypothetical key skf might reveal the predicate functionality
contents f , which is undesirable when f itself contains sensitive information (aka a pre-signed transaction
or a private key). This has motivated the study of function privacy in FE, see for instance [7, 8, 9].

An IPE scheme is called function-hiding if the keys and ciphertexts reveal no additional information
about the related vectors beyond their inner product. The fully function-hiding IPE achieves the most
robust IND-based notion of both data and function privacy in the private-key setting in the standard
model. The model of full function privacy is sketched hereas described in [9, 10]. Adversaries are
allowed to interact with two left-or-right oracles KeyGenb(mk, ·, ·) and Encb(mk, ·, ·) for a randomly chosen
b ∈ {0, 1}, where KeyGenb takes two functions f0 and f1 as input and it returns a functional decryption
key skfb

= KeyGen(mk, fb). The algorithm Encb takes two messages x0 and x1 as input and it outputs
a ciphertext cxb

= Enc(mk, xb). Adversaries can adaptively interact with oracles for any polynomial (a
priori unbounded) number of queries. To exclude inherently inevitable attacks, there is a condition for
adversarial queries that all pairs (x0, x1) and (f0, f1) must satisfy f0(x0) = f1(x1).

Only two approaches have been proposed for (fully) function-private IPE schemes in the private-key
setting. One is to employ the Brakerski-Segev general transformation from (non-function-private) FE
schemes for general circuits [8]. The transformation itself is efficient since it simply combines symmetric
key encryption with FE in a natural manner. Anyway, this approach requires computationally intensive
cryptography tools, such as IND obfuscation, to realise non-function-private FE for general circuits,
meaning it may be relatively inefficient overall. The other approach may be more practical. It directly
constructs IPE schemes by using the dual-pairing vector spaces (DPVS) introduced by Okamoto and
Takashima [11, 12].

In the last few years, there has been a flurry of works on the construction of function-hiding IPE,
starting with the work of Bishop, Jain, and Kowalczyk [6]. They propose a function-hiding IPE scheme
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under the SXDH assumption, which satisfies an adaptive IND-based security definition. But the security
model has one limitation: all ciphertext queries x0, x1 and all secret key queries y0, y1 are restrained by
⟨x0, y0⟩ = ⟨x0, y1⟩ = ⟨x1, y0⟩ = ⟨x1, y1⟩. In [9], Datta et al. develop a full function-hiding IPE scheme built
in the setting of asymmetric bilinear pairing groups of prime order. The security of the scheme is based on
the well-studied SXDH assumption where the restriction on adversaries’ queries is only ⟨x0, y0⟩ = ⟨x1, y1⟩.
Here, secret keys and ciphertexts of n-dimensional vectors consist of 4n + 8 group elements. Tomida
et al., in [13], construct a more efficient function-hiding IPE scheme than that of [9] under the XDLIN
assumption, where secret keys and ciphertexts consist of 2n + 5 group elements. Kim et al., in [14], put
forth a fully-secure function-hiding IPE scheme with smaller parameter sizes and run-time complexity
than those in [6, 9]. The scheme is proved SIM-based secure in the generic model of bilinear maps. In
[15], Zhao et al. present the first SIM-based secure secret-key IPE scheme under the SXDH assumption in
the standard model. The authors claim that the scheme can tolerate an unbounded number of ciphertext
queries and adaptive key queries. Zhao et al. in [16] propose a new version of the scheme, which is
an improvement in terms of computational and storage complexity. In a very recent work [17], Liu et
al. present a more efficient and flexible private-key IPE scheme with SIM-based security. To ensure
correctness, the scheme requires that the computation of inner products is within a polynomial range,
where the discrete logarithm of g⟨x,y⟩ can be found in polynomial time. In [17], the authors compare their
proposed IPE scheme with those in [9, 13, 15, 16]. The performance of this scheme appears superior in
both storage complexity and computation complexity. Moreover, secret keys and ciphertexts are shorter.

Although most aforementioned IPE schemes are efficient and based on standard assumptions, they all
have one inconvenient property: they are bounded. The maximum length of vectors has to be fixed at the
beginning, and afterward, one cannot handle vectors whose lengths exceed it. This could be inconvenient
when it is hard to predict which data will be encrypted in the setup phase. One may think to solve the
problem by setting the maximum length to a large value. However, the size of parameters expands at
least linearly with the fixed maximum length, and such a solution incurs an unnecessary efficiency loss. In
the context of IP-PE and ABE, there exist unbounded schemes (see, for instance, [18, 19, 20, 6]), whose
public parameters do not impose a limit on the maximum length of vectors or number of attributes used
in the scheme. In [13], Tomida and Takashima construct two concrete unbounded IPE schemes based
on the standard SXDH assumption, both secure in the standard model: the first is a private-key IPE
with fully function hiding, the second scheme is a public-key IPE with adaptive security. Concurrently
and independently, in [21], Dufour-Sans and Pointcheval describe an unbounded IPE system supporting
identity access control with succinct keys. Their construction is proved selectively IND-secure in the
random oracle model based on the standard DBDH assumption. In [13], it is shown a comparison, in
terms of efficiency, among private-key schemes that are fully function hiding [20, 19, 15] and public-key
schemes with adaptive security in the standard model [22].

3 Proposal

To achieve succinct verification of Placeholder (and in general SNARK) proofs on Bitcoin practically
two approaches can be considered:

1. Implement trivial covenants (e.g. CAT ) with Bitcoin PIPE (FH-MIPE predicates) and to implement
LPC/FRI commitments verification using FH-MIPE covenant signing as an equivalent of using
OP_CAT itself and to eventually introduce OP_MUL as an additional opcode.
This approach would lead to a composite covenant which would allow to verify Placeholder on Bitcoin
by verifying commitments in 8 and 6, but not the gates part (aka the circuit definition - "Quotient
polynomial check", "Verify Basic Constraints", "Verify Lookup Argument" and "Verify Permutation
Argument" in 7) as it would require the emulation of a multiplication opcode. This means the
verification would still be some considered some kind of "optimistic" ’cause only commitments will
be checked (i.e. LPCV er and FRIV er) (no constraint-related checks will be made).

2. Implement the whole ZKP (e.g. Placeholder proof system [1]) verification procedure within the
Bitcoin PIPE using some FH-MIPE scheme enabling complex predicates, which would enable a
complete Placeholder verification on Bitcoin, but it would be a monolithic application-specific
covenant.
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Considering the complexity of the Placeholder verifier, both of these verification approaches would
require to pick a functional encryption scheme, which would allow predicates to be defined with at least
polynomial-size circuits (such schemes can be found among predicate encryption schemes) because to
make the functionality to behave like a covenant it would be required to make it to:

1. Encrypt the Schnorr signing key sk.

2. Verify some proof system proof (IPA/KZG-based ([23]) most probably).

3. If the verification is successful, then to sign input user data m with sk during decryption predicate
execution.
This also means the functionality would need to define, among other primitives, Schnorr signing
algorithm.

Or, more formally, the overall process would look like this:

Algorithm 1 CovenantSetup

Input:
FE master keys: (m, M) ∈ K = {0, 1}∗ ∪ {ϵ},
Schnorr Keys: (sk, pk),
Public Inputs: input, proof

Transaction: tx

Output: Functionality Cf : K ×X ⇔ {0, 1}∗

1: m : Cp ← Encrypt(M, sk)
2: PrivateKey(sk, proof, input) = Add(m, Verify(proof, input))
3: Publickey(pk, proof, input) = TweakAdd(pk, Verify(proof, input))
4: F (sk, tx, proof) = if Verify(proof, input) = true then return SchnorrSign(sk, tx) else return true
5: Compute the public key: u← PublicKey(pk, proof, input)
6: Encrypt the function: Cf = EncryptFunction(m, F )
7: Protocol initializer erases m and sk.

σ ← Cf (Cp, Encrypt(M, tx))

From now on, σ can be used as a signature of u over tx. If m and sk were erased, Cf can only sign in
case the covenant functionality F is "executed" correctly.

3.1 Functional Encryption Schemes for Circuits

To define such functionality, we need an an FE (or PE) scheme for circuits. Functional Encryption
schemes for circuits have been studied extensively due to their powerful expressive abilities. Such schemes
allow computation of arbitrary circuits over encrypted data, enabling a wide range of applications. The
main goal in this area is to construct FE schemes that support circuits of arbitrary polynomial size while
maintaining security and efficiency.

In [24], Gorbunov et al. present a leveled PE scheme for all circuits (Boolean predicates of bounded
depth), with succinct ciphertexts and secret keys independent of the size of the circuit. The achieved privacy
notion is a selective SIM-based variant of attribute-hiding, assuming the hardness of the subexponential
LWE problem. Recall that the strong variant notion (full attribute-hiding) is impossible to realize for
many messages [25].

Some results have also been obtained for general-purpose FE, in which functions associated with secret
keys can be any arbitrary circuits. In [26], Garg et al. give constructions for IND obfuscation (based
on multilinear maps), and they use it to construct FE for all polynomial-size circuits. In [27], there are
constructions directly based on multilinear maps. Further analysis can be found in [25] where Lin and
Tessaro reduce the degree of the required multilinear map to 3.

One of the early works in this area was by Gorbunov, Vaikuntanathan, and Wee in 2015, who proposed
a general-purpose FE scheme for circuits based on learning with errors (LWE) [28]. This scheme supports
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the evaluation of any polynomial-size circuit on encrypted data while ensuring that the only information
leaked is the output of the circuit.

In 2016, Garg, Gentry, Halevi, and Zhandry introduced a more efficient construction based on the
notion of multi-input functional encryption (MIFE) [29]. Their scheme supports the evaluation of circuits
on inputs encrypted under different keys, which broadens the applicability of FE to scenarios involving
multiple data sources.

Recently, there has been a significant focus on improving the efficiency of FE schemes for circuits. A
notable contribution in this direction was made by Ananth, Brakerski, and Vaikuntanathan in 2017, who
proposed an FE scheme for circuits with better security guarantees and reduced ciphertext size [30].

It is also required to take into consideration that an obfuscated/encrypted signing entity private key is
necessary to be baked into the covenant, which means the choice of a particular FE scheme would depend
on if it supposes the presence of IO or function-hiding.

Unfortunately none of the existing FE schemes for circuits satisfy the requirements as the requirement
to maintain function-privacy introduces necessity for IO, which makes the scheme inefficient. Which
means it is necessary to look for a workaround.

3.2 PIPE: Polynomial (Function-Hiding) Inner Product Encryption

As mentioned, it is required to have a Schnorr signing key encrypted to make an FE scheme to behave
like a covenant. This means the FE scheme should be a function-hiding one to avoid revealing the key
itself. If the FE scheme in use does not guarantee any hiding of the function (which is the case for many
existing FE schemes), then the key skf might reveal f , which is undesirable when f itself contains sensitive
information (Schnorr signing key). As discussed in 2.4, the scheme of a choice should be either:

1. Function-hiding one capable of having predicates deifned with circuits.

2. Multi-input one with indistinguishable obfuscator being present, again, being capable of defining
predicates with circuits.

3.2.1 Inner-Product Functional Encryption

To satisfy all the requirements of the concept though, a modification of a DPVS-based scheme described
in [31] is proposed to be used. The scheme proposed to be used enables inner-product functionalities
to be computed and is designed to be instantinated under pretty widespread SXDH assumptions, but,
unfortunately, it is not generic enough as it doesn’t support general-purpose circuits, straightforward
introduction of which, as discussed in 2.4, would require to introduce indistinguishable obfuscation
or encrypt inputs in a way similar to Brakerski-Segev transformation, which would make the scheme
impractical.

To bypass the necessity for an IO, it is proposed to replace direct circuit definition (aka using FE for
circuits) with embedding linearizable proof system verification and signature generation primitives into
the resulting inner product pairing computation. Since the initial scheme is based on DPVS framework,
this way it would be possible to keep the Schnorr signing key secret (to not to reveal it to the decryptor)
and in the same time it makes it possible to define various computations as a condition for the signing to
happen.

3.2.2 Initial Scheme: FH-MIPE

The FH-MIPE scheme to begin with ([32], [31]) consists of four main algorithms: Setup, KeyGen,
Encryption, and Decryption:
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Algorithm 2 FH-MIPE.Setup
1: procedure FH-MIPE.Setup(m, n, B, λ)
2: Generate bilinear group parameters G = (q,G1,G2,GT , g1, g2, e)← Gbpg(1λ) with q ≫ nB

3: Generate DPVS parameters V = (q,V1,V2,GT ,A1,A2, e)← Gdpvs(2m + 2k + 1,G)
4: Sample ν ∈ Fq \ {0}, compute gT = e(g1, g2)ν

5: for ι ∈ [n] do
6: Generate dual orthonormal bases:

(Bι = {bι,j}2m+2k+1
j=1 ,B∗

ι = {b∗
ι,j}2m+2k+1

j=1 )← Gob(2m + 2k + 1,V, ν)

7: end for
8: Output public parameters:

pp = (G,V, gT , {Bι}ι∈[n])

9: Output master secret key:
msk = (ν, {B∗

ι }ι∈[n])

10: end procedure

Algorithm 3 FH-MIPE.KeyGen
1: procedure FH-MIPE.KeyGen(pp, msk, {yι}ι∈[n])
2: for ι ∈ [n] do
3: Sample random scalars γι,1, γι,2 ← Fq

4: Compute:
skι = (yι, 02m+2k+1, γι,1, γι,2)

5: end for
6: Output decryption key:

sk = {skι}ι∈[n]

7: end procedure

Algorithm 4 FH-MIPE.Encrypt
1: procedure FH-MIPE.Encrypt(pp, msk, ι, xι)
2: Choose random elements ϕι,1, . . . , ϕι,k

U← Fq.
3: Compute

cι =
∑

j∈[m]

x(j)
ι bι,j + bι,2m+1 +

∑
j∈[k]

ϕι,jbι,2m+k+j = (xι, 0m, 1, 0k−1, ϕι,1, . . . , ϕι,k, 0) Bι,

where Bι is extracted from msk.
4: Output the ciphertext ctι = (ι, cι).
5: end procedure

Algorithm 5 FH-MIPE.Decrypt
1: procedure FH-MIPE.Decrypt(pp, sk, {ctι}ι∈[n])
2: Compute:

LT =
∏

ι∈[n]

e(ctι, skι)

3: Find Λ ∈ Z such that:
gΛ

T = LT

4: Output Λ if successful; else, output ⊥
5: end procedure
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3.2.3 FH-MIPE to Quadratic Function Encryption (QFE)

In the original FH-MIPE scheme, the decryption computes an inner product between the encrypted
vectors xι and the secret key vectors yι, resulting in a linear function evaluation of the form:

Λ =
n∑

ι=1
⟨xι, yι⟩.

However, the goal is to generate a Schnorr signature during decryption to induce covenant-alike
behavior, which involves operations that are inherently nonlinear, specifically exponentiation and hashing
outputs. Additionally, it is neccesary to integrate the verification of a KZG-based Placeholder proof,
which involves verifying polynomial relationships and pairing equations that are quadratic in nature.

Given that both the Schnorr signature generation and the KZG-based Placeholder verification require
quadratic computations, we need a functional encryption scheme that supports quadratic functions. The
original FH-MIPE scheme is limited to linear functions (inner products) and cannot natively support
these quadratic computations within its decryption process.

Therefore, a transition to Quadratic Functional Encryption (QFE) is necessary. QFE schemes allow
for the evaluation of quadratic functions over encrypted data during decryption. This enables us to
compute the required nonlinear operations and integrate the verification steps directly into the decryption
algorithm.

3.2.4 Incompatibility with Inner Product Pairing Computation

The inner product pairing computation in the original FH-MIPE scheme cannot accommodate the
generation of a Schnorr signature or the KZG-based Placeholder verification.

• Schnorr Signature Generation: The computation of a Schnorr signature involves multiplying
the secret signing key xsign with a hash output e, and adding a random nonce k. This operation is
of the form:

s = k + xsign · e mod q,

which is a nonlinear operation involving both addition and multiplication of secret values. An inner
product computation cannot capture this operation, as it is limited to linear combinations.

• KZG-Based Placeholder Verification: The verification of KZG commitments involves checking
polynomial relationships and pairing equations that are quadratic in the exponents. These verifica-
tions require the ability to compute products of encrypted values, which is beyond the capability of
inner product computations.

• Quadratic Equations in Verification: The verification equations for the Placeholder proof
involve terms like a(z) ·b(z), which are products of polynomial evaluations at a point z. Representing
and verifying such equations require quadratic computations over the encrypted data.

Thus, to achieve the goal, we need a functional encryption scheme capable of handling quadratic
computations, which necessitates the transition to Quadratic Functional Encryption.

3.2.5 Transition from MIPE to Quadratic Functional Encryption (QFE)

As established, the FH-MIPE scheme supports multi-input inner product functionality, which is
insufficient for the purpose. We need to extend the scheme to support quadratic functions with following
modifications:

• Key Generation: Modify the key generation algorithm to produce keys corresponding to quadratic
functions.
Given a symmetric matrix M ∈ Fn×n

q defining the quadratic function f(x) = x⊤Mx, the functional
decryption key is defined as:

sk = (ν, M, {B∗
ι }ι∈[n]).
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• Encryption: Adjust the encryption algorithm to encrypt the input vector x.
For an input vector x ∈ Fn

q , the encryption algorithm computes ciphertexts:

ctι = gxι
2 , for ι ∈ [n].

• Decryption: Modify the decryption algorithm to compute quadratic function evaluations during
decryption.
The decryption algorithm computes:

LT =
n∏

ι=1

n∏
j=1

e(ctι, ctj)Mιj = e(g2, g2)x⊤Mx

.
Since gT = e(g1, g2)ν and e(g2, g2) = e(gν−1

1 , g2), we have:

LT = e(g1, g2)x⊤Mx

.
Therefore, we can recover Λ = x⊤Mx such that:

gΛ
T = LT .

3.3 Bitcoin PIPE: Incorporate Schnorr Signature Generation

What makes an FH-MIPE-encrypted Schnorr private key a covenant is a predicate which yields a
Schnorr signature (R, s) on a message m executed within the QFE-defined predicate. This embedding
modifies the process to include following steps:

• Function Definition: Define the function f(k, xsign) = (R, s), where R = k ·G, s = k + xsign · e
mod q, and e = H(P ∥ R ∥ m).

• Encryption:
1. Nonce Generation: Generate nonce k deterministically using a SHA2-256 hash function

modeled within QFE inside the predicate, e.g.,

k = SHA2− 256QFE(x, m),

2. Compute Commitment:
R = k ·G.

3. Encrypt Inputs:
ctx = Enc(x).

ctk = Enc(k).

4. Form Ciphertext:
ct = (ctx, ctk, Rx, m).

• Decryption:
1. Compute Challenge:

e = SHA2-256(Rx ∥ Px ∥ m).

Note: e is either computed externally and treated as a constant in the decryption function,
either with a QFE-modelled SHA2-256.

2. Signing Expressed in QFE:

s = f(ctx, ctk) = k + ex mod q

. The function f computes s using encrypted inputs ctx, ctk, and constant e.
3. Output Signature:

σ = (Rx, s).

10



• Verification: The signature σ = (Rx, s) can be verified using Bitcoin’s standard Schnorr signature
verification algorithm:

1. Reconstruct R from Rx. Since only Rx is known, we need to handle the ambiguity in the
y-coordinate. In Bitcoin, this is resolved by encoding the parity of Ry in the signature or by
using the quadratic residue of Ry.

2. Compute challenge e = SHA-256(Rx ∥ Px ∥ m).

3. Verify that: sG
?= R + eP.

3.3.1 Embedding Secp256k1 Into a Pairing-Friendly Curve

In a QFE scheme, we operate over pairing-friendly elliptic curves (e.g., BLS12-381) that support bilinear
pairings necessary for the scheme’s functionality. However, Bitcoin’s Schnorr signature scheme operates
over the secp256k1 curve, which is not pairing-friendly and uses different underlying field parameters.

To integrate Bitcoin-compatible Schnorr signatures within our QFE scheme, we can consider introducing
non-native curve arithmetics to perform computations over secp256k1 within the QFE scheme’s framework.

Non-native curve arithmetic involves performing arithmetic operations of one elliptic curve (the
non-native curve) within the arithmetic framework of another elliptic curve (the native curve). Specifically,
we aim to simulate the operations of secp256k1 (non-native curve) within the field and group operations
of the pairing-friendly curve used in the QFE scheme (native curve).

To achieve this, we need to:

• Represent elements of the secp256k1 field Fp within the field Fq of the QFE scheme.
• Implement the arithmetic operations of Fp (addition, multiplication, inversion) using the operations

available in Fq.
• Simulate the elliptic curve group operations (point addition, scalar multiplication) of secp256k1

within the QFE scheme.

Sec256k1 Curve The secp256k1 curve is defined over the finite field Fp, where:

p = 2256 − 232 − 977.

The curve equation is:

Esecp : y2 = x3 + 7 mod p.

Pairing-Friendly Curve The pairing-friendly curve used in the QFE scheme (e.g., BLS12-381) is
defined over the finite field Fq, where q is a large prime different from p. The curve equation and group
operations are defined accordingly.

Representing Fp Elements in Fq Since p and q are different primes, elements of Fp cannot be directly
represented as elements of Fq. Instead, we can represent elements of Fp as vectors of elements in Fq.

Bit Decomposition An element a ∈ Fp can be represented by its binary expansion:

a =
255∑
i=0

ai · 2i,

where ai ∈ {0, 1}.
Each bit ai can be represented as an element in Fq (since Fq can represent the values 0 and 1).

Emulating Fp Arithmetic in Fq To perform arithmetic operations over Fp within Fq, we can use
arithmetic circuits that simulate the field operations using the bitwise representation.
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Addition Given a, b ∈ Fp with bit representations {ai} and {bi}, the sum c = a + b mod p can be
computed by:

1. Perform bitwise addition with carry:

ci = ai ⊕ bi ⊕ ci−1,

where ci−1 is the carry from the previous bit.

2. Enforce constraints to handle carries and modulus p.

Multiplication Multiplication can be performed using algorithms like:

• Long Multiplication: Multiply bit representations and sum appropriately.
• Karatsuba Algorithm: Optimize multiplication by reducing the number of multiplications

required.

Modular Reduction Since operations are modulo p, we need to implement modular reduction algo-
rithms to ensure results remain within Fp.

Elliptic Curve Point Operations Elliptic curve point addition and scalar multiplication over secp256k1
involve field operations in Fp.

Point Addition Given two points P = (x1, y1) and Q = (x2, y2) on Esecp, the point addition formulas
are:

λ = y2 − y1

x2 − x1
mod p,

x3 = λ2 − x1 − x2 mod p,

y3 = λ(x1 − x3)− y1 mod p.

These operations involve field addition, subtraction, multiplication, and inversion, all of which must
be emulated within Fq.

Scalar Multiplication Scalar multiplication R = k ·Gsecp is performed using repeated point additions
and doublings, following methods like the double-and-add algorithm.

3.3.2 Quadratic Constraints Representation

In QFE, the decryption function f is a quadratic polynomial over the plaintext inputs. That is, for
inputs x = (x1, x2, . . . , xn), the function f has the form:

f(x) =
n∑

i=1
aixi +

n∑
i=1

n∑
j=1

bijxixj + c,

where ai, bij , and c are constants.
To model computations within QFE, we need to express the desired computation as such a quadratic

function. This often involves transforming or approximating the computation to fit within the quadratic
framework. For example, the expression for the inner product of two vectors x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) is:

f(x, y) =
n∑

i=1
xiyi.

This is a quadratic function in the combined inputs x and y. In the context of QFE, we can encrypt
both x and y and compute the inner product during decryption.
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3.4 Implementing Schnorr Signature Computation

We aim to compute the Schnorr signature components (R, s) within the QFE scheme, where operations
are defined over secp256k1.

3.4.1 Signature Components

• Nonce Generation: k ∈ Fn, where n = p (order of secp256k1).
• Commitment Computation: R = k ·Gsecp.
• Challenge Computation: e = H(R, m).
• Response Computation: s = k + xsign · e mod n.

3.4.2 Implementation Steps

1. Represent Scalars and Points
Represent k, xsign, e, and the point coordinates within Fq using their bitwise representations.

2. Emulate Scalar Multiplication
Compute R = k ·Gsecp by emulating scalar multiplication within the constraints of the QFE scheme.

3. Compute Challenge
Since e = H(R, m), where H is a hash function, we need to model H within the QFE scheme or
treat e as an external input.

4. Compute Response
Compute s = k + xsign · e mod n using emulated field addition and multiplication.
Since it is linear in k and x. To make it compatible with QFE, we can represent s as a quadratic
function by considering linear functions as a special case of quadratic functions with zero quadratic
coefficients.
Define the quadratic function f(k, x):

f(k, x) = s = akkk2 + axxx2 + akxkx + bkk + bxx + c,

where:

• akk = 0, axx = 0, akx = 0.
• bk = 1, bx = e, c = 0.

Thus, the function simplifies to:

s = f(k, x) = bkk + bxx = k + xe.

5. Express Constraints
All operations must be expressed as quadratic constraints over Fq.

3.4.3 Usage

Architecturally speaking, such a PIPE (FH-MIPE) covenant is a ciphertext with a functionality which
contains and encrypted Schnorr signing key hidden within the predicate, which if the covenant is not
satisfied, would simply not sign the withdrawal transaction.

This means sending to a PIPE-restricted account would look like this:

1. Retrieve an encrypted opcode binary with covenant e and private key sk.

2. Select the covenant instance parameters i if needed.

3. Tweak sk by ei.

4. Send funds to ei.
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Accordingly, redeeming from the account would look as:

1. Prepare the state transition with a specific tx and collect all necessary verification data.

2. Pass the data and tx to the encrypted opcode binary.

3. Submit a transaction with a signature generated by a covenant binary.

3.5 Zero-Knowledge Proofs Verification PIPE

As the end goal is to use Bitcoin PIPEs covenants to verify ZKPs on Bitcoin (using Placeholder as an
example), let’s recall the Placeholder verification procedures and define necessary PIPE primitives for it:

Algorithm 6 LPC.EvalVerify
Input:

proof P,
evaluation points {ξ(k)}l−1

k=0,
roots of Merkle trees {rootk}K−1

k=0 ,
transcript

Output: verification result = true/false
1: {z(0), . . . , z(l−1), π} = parse(P)
2: Interpolate polynomials Uk(X) = lagrange_interpolation({ξ(k)

j , z
(k)
j }) for 0 ≤ k < l, 0 ≤ j < |ξ(k)|

3: Compute Vk(X) =
∏|ξ(k)|−1

j=0 (X − ξ
(k)
j )

4: if FRI.Verify(π, {rootk}K
k=0, {Uk(X)}l−1

k=0, {Vk(X)}l−1
k=0, transcript) = false then return false

5: return true
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Algorithm 7 Verify
Input: πPlaceholder, preprocessed_data, transcript
Output: true/false

1: Parse proof πPlaceholder into:

πcomm = { variable, V_polynomials, lookupperm, quotient, fixed}
πeval is evaluation proofs for
polynomial_evaluations = {

wi(y), wi(ζd · y), i = 0, . . . , Nwt − 1, si(y), si(ζd · y), i = 0, . . . , Npi − 1
for all corresponding d ∈ o,

V σ(y), V σ(ζ · y), aperm(y), aperm(ζ−1 · y), lperm(y), VL(y), VL(ζ · y),
{Ti(y)}, i = 0, . . . , NT − 1
ci(y), ci(ζd · y), i = 0, . . . , Ncn − 1, li(y), li(ζd · y), i = 0, . . . , Nlk − 1, qi(y), qi(ζd · y), i = 0, . . . , Nsl − 1

for all corresponding d ∈ o,

qlast(y), qpad(y), L0(y)}

2: Verify Permutation Argument:
3: Denote polynomials included in permutation argument as f0, . . . , fNperm−1
4: Get values {fi(y)}, {Se

i (y)}, {Sσ
i (y)}, V σ(y), V σ(ζ · y), L0(y), qlast(y), qpad(y) from πPlaceholder

5: Calculate

F0(y), F1(y), F2(y) = PermArgumentVerify(y, V σ(y), V σ(ζ · y), {fi(y)},
{Se

i (y)}, {Sσ
i (y)}, qpad(y), qlast(y), L0(y), transcript)

6: Verify Lookup Argument:
7: Denote polynomials included in lookup argument as a0, . . . , aNlk−1
8: Get values {ai(y)}, {li(y)}, aperm(y), aperm(ζ−1 · y), lperm(y), VL(y), VL(ζ · y), L0(y), qlast(y), qpad(y)

from πPlaceholder
9: Calculate:

F3(y), F4(y), F5(y), F6(y), F7(y) = LookupArgumentVerify(
lookupperm, {ai(y)}, {li(y)},
aperm(y), aperm(ζ−1 · y), lperm(y),
VL(y), VL(ζ · y), L0(y), qlast(y), qpad(y), transcript)

10: transcript.append(V_polynomials)
11: Verify Basic Constraints:
12: For i = 0, . . . , Nsl − 1

gi(X) = qi(X) · (θki−1+νiCi0(X) + · · ·+ θνiCik−1(X))

13: Calculate a constraints-related numerator of the quotient polynomial F8(y) =
∑

0≤i<Nsl

(gi(y))

14: Quotient polynomial check:

15: if
8∑

i=0
αiFi(y) ̸= Z(y)T (y) then return false

16: Get challenges {αi ∈ F}8
i=0, θ ∈ F, y ∈ F \H from transcript

17: transcript.append(quotient)
18: Evaluation proof check
19: if LPC.EvalVerify(polynomials_evaluations, πcomm, transcript) = false then return false
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Algorithm 8 FRI.Verify
Input: FRI proof π, Merkle roots {T_rootk}K−1

k=0 , {Uk(X)}l−1
k=0, {Vk(X)}l−1

k=0, transcript
Output: verification result = true/false

1: {fri_root0, . . . , fri_rootstepsFRI−1, π(0), . . . π(rq−1), final_polynomial} = parse(π)
2: D(0) = D, D(i+1) = qri

(
D(i)), for i = 0, . . . , stepsFRI − 2

3: for all k = 0, . . . , L− 1 do
4: transcript.append(T_rootk)
5: end for
6: τ := transcript.challenge(F)
7: t := 0
8: for all i := 0, . . . , stepsFRI − 1 do
9: transcript.append(fri_rooti)

10: for all step := 0, . . . , ri − 1 do
11: αt := transcript.challenge(F)
12: t := t + 1
13: end for
14: end for
15: for all query = 0, . . . , rq − 1 do
16: {π∗, π0, . . . , πstepsFRI−1} = parse(π(round))
17: x(0) = transcript.challenge(D0)
18: x(i+1) = qri(x(i)), i = 0, . . . , stepsFRI − 1
19: Construct cosets S(i) = {s ∈ D(i) | qri(s) = x(i+1)}, for i = 0, . . . , stepsFRI − 1 ▷ |S(i)| = mri

20: Initial proof check
21: t := 0;
22: for all k := 0, . . . , K − 1 do
23: if π∗.authk.root ̸= T_rootk then return false

24: if MT.Validate(π∗.authk, {π∗.val(t), . . . , π∗.val(t+lk−1)}) = false then return false

25: t := t + lk
26: end for
27: Compute values of combined polynomial Q values val from πk.val

val =
{

l−1∏
k=0

τ l−k−1 π∗.val(k)
s − Uk(s)
Vk(s)

}
s∈S(0)

28: Round proofs check
29: t := 0, S := S(0)

30: for all i := 0, . . . , stepsFRI − 1 do
31: if πi.auth.root ̸= π.fri_rooti then return false

32: if MT.Validate(πi.auth, val) = false then return false

33: for all step := 0, . . . , ri − 1 do
34: Snext := {q(s)}s∈S

35: interpolants := lagrange_interpolation({sj , valsj
}q(sj)=s)(αt) for s ∈ Snext

36: t := t + 1, S := Snext, val := {interpolants}s∈Snext ▷ |Snext| = ri − step− 1
37: end for
38: if val ̸= πi.y(x(i+1)) then return false ▷ |val| = 1
39: val := πi.y

40: end for
41: if final_polynomial(x(stepsFRI)) ̸= val then return false

42: end for
43: return true

As mentioned in the beginning of this section (3, there are two ways to verify zero-knowledge proofs
on Bitcoin. Let’s refrain them knowing that now there is an FE scheme capable of complex computations
over the ciphertext while maintainng function-privacy (PIPE):
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1. Implement trivial covenants (e.g. CAT ) with Bitcoin PIPEs (FH-MIPE predicates) and to implement
LPC/FRI commitments verification using FH-MIPE covenant signing as an equivalent of using
OP_CAT itself and to eventually introduce OP_MUL as an additional PIPE.

2. Implement the whole ZKP (e.g Placeholder) verification procedure within the Bitcoin PIPE.

Both of these approaches would require for the verification to be converted into the QFE-compatible
equations, which means it would preferrable to replace the hash-based commitment scheme with a
pairing-based one to be able to fit that easier. The most obvious candidate is KZG ([23]).

3.5.1 Integrate KZG-Based Placeholder Proof Verification

We need to embed the verification of a KZG-based Placeholder proof into the decryption process,
ensuring that the Schnorr signature is generated only if the proof verifies correctly. For ths we need to:

• Include Proof in Ciphertext: Extend the ciphertext to include the Placeholder proof π. The
ciphertext becomes:

ct = (ct1, ct2, π).

• Verification during Decryption: Modify the decryption algorithm to perform the Placeholder
proof verification. During decryption, the decryptor:

1. Parses the proof π.
2. Verifies the KZG commitments and the correctness of the polynomial evaluations as per the

Placeholder proof system.
3. Checks the verification equations, which involve pairing equations and polynomial relationships.

• Express Verification Equations: Represent the Placeholder verification equations as quadratic
equations compatible with the QFE scheme.

3.5.2 KZG Commitments

A KZG commitment to a polynomial f(X) of degree d is computed as:

Cf = f(τ) ·G =
d∑

i=0
fiτ

iG,

where:

• τ ∈ Fq is a secret.
• G is a generator of G1.
• fi are the coefficients of the polynomial f(X).

3.5.3 Verification Primitives

The KZG verification involves checking that a claimed evaluation f(z) of the polynomial f(X) at a
point z ∈ Fq is correct, given the commitment Cf and a proof πf . The verification equation is:

e(Cf − f(z)G, g2) = e(πf , gτ−z
2 ).

Since gτ−z
2 is not directly available, it can be computed as:

gτ−z
2 = gτ

2
gz

2
,

where gτ
2 is part of the Structured Reference String (SRS) and gz

2 can be computed by the verifier.
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3.5.4 Translation to QFE-Compatible Expressions

To integrate these verification steps into the QFE scheme, we need to represent the pairing-based
verification equations as quadratic functions over Fq that can be evaluated within the decryption algorithm.

Representation of Pairing Equations Consider the verification equation:

e(Cf − f(z)G, g2) = e(πf , gτ−z
2 ).

Taking logarithms in the exponents (since we are working over Fq), we can represent the pairing
equation in terms of the exponents:

⟨Cf − f(z)G, g2⟩ = ⟨πf , gτ−z
2 ⟩,

where ⟨·, ·⟩ denotes the pairing in the exponent space.
However, directly computing logarithms in the exponents is not practical due to the Discrete Logarithm

Problem. Instead, we can express the pairing equation as a zero equation suitable for QFE:

e(Cf − f(z)G, g2) · e(πf , gz−τ
2 ) = 1GT

.

Since e(A, B) · e(C, D) = e(A · C, B ·D), we can write:

e
(
(Cf − f(z)G) · πf , gz−τ

2 · g2
)

= e(1G1 , 1G2).

But this still involves pairing computations.

Quadratic Expression over Fq To make the verification compatible with QFE, we represent the
verification condition as a quadratic equation over Fq involving the exponents.

Let us denote:

Cf = [cf ]G, where cf = f(τ),

πf = [wf ]G, where wf = cf − f(z)
τ − z

.

The pairing equation becomes:

e ([cf − f(z)]G, g2) = e (wf G, [τ − z]g2) .

Since e(aG, bg2) = e(G, g2)ab, we can write:

e(G, g2)(cf −f(z))·1 = e(G, g2)wf ·(τ−z).

Thus, the verification condition is:

(cf − f(z)) = wf (τ − z).

This is an equation over Fq, involving products of values. Since τ is known to the decryptor (as part
of msk), the decryptor can compute both sides of the equation and verify whether it holds.

Expressing in Quadratic Form The verification equation:

(cf − f(z))− wf (τ − z) = 0

can be represented as a quadratic function in the variables:
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fverify(cf , f(z), wf , τ, z) = (cf − f(z))− wf (τ − z).

This equation is linear in cf , f(z), wf , and τ , but since wf depends on cf , f(z), and τ , the overall
relationship is quadratic.

3.5.5 Inclusion in QFE Decryption

During decryption, the decryptor performs the following steps:

1. Compute cf and wf

Using the commitments and proofs in π, the decryptor extracts the exponents cf and wf (since the
decryptor knows τ and can compute discrete logs in G1).

2. Verify the Quadratic Equation
Evaluate the quadratic function:

fverify = (cf − f(z))− wf (τ − z)

and check whether fverify = 0.

3. Compute Verification Indicator δ

Define:

δ =
{

1, if fverify = 0
0, otherwise

.

4. Proceed with Decryption Use δ in the computation of s′ as previously described.

3.5.6 Other Verification Equations

Similarly, other verification equations in the KZG-based Placeholder proof system can be translated
into quadratic expressions over Fq.

Polynomial Identity Verification For example, verifying that:

a(z) · b(z)− c(z) = 0

is inherently a quadratic equation in a(z) and b(z). The decryptor can compute a(z), b(z), and c(z)
from the evaluations provided in π (since the decryptor can compute discrete logs with knowledge of τ).
The verification is then straightforward.

Permutation Argument Verification In the permutation argument, we verify that:

Zperm(z)(s1(z) + βs2(z) + γ) = Zperm(ωz)(a(z) + βb(z) + γ)

This equation can be rearranged and represented as a quadratic function over Fq.
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3.5.7 Resulting Scheme

Algorithm 9 PIPE.Setup
1: procedure PIPE.Setup(1λ)
2: Generate cyclic groups G1, G2, GT of order q.
3: Choose generators G ∈ G1, g2 ∈ G2.
4: Define bilinear pairing e : G1 ×G2 → GT .
5: Placeholder Setup (KZG Commitments):

• Sample τ ∈ Fq.
• Compute SRSG1 = {τ iG}d

i=0.
• Compute SRSG2 = {τ ig2}d

i=0.
6: Functional Encryption Setup:

• Sample msk = (ν, τ), where ν ∈ F∗
q .

• Compute gT = e(G, g2)ν .
• Compute g′

2 = gν−1

2 .
7: Output pp = (G, g2, e, H, SRSG1 , SRSG2 , gT , g′

2).
8: Output msk.
9: end procedure

Algorithm 10 PIPE.KeyGen
1: procedure PIPE.KeyGen(pp, msk, f)
2: Define f(k, xsign, πk, πxsign) = s, where:

• s = (k + xsign · e) · v mod q.
• v = Verify(πk, πxsign) outputs 1 if proofs are valid, 0 otherwise.

3: Generate skf for function f using msk.
4: Output skf .
5: end procedure

Algorithm 11 PIPE.Encrypt
1: procedure PIPE.Encrypt(pp, xsign, m)
2: Random Nonce Generation:
3: Generate random k ∈ Fq.
4: Compute R:
5: R = k ·G.
6: Compute Hash e:
7: e = H(P ∥ R ∥ m).
8: Encrypt k and xsign:
9: ctk = Enc(k).

10: ctxsign = Enc(xsign).
11: Generate KZG Commitments and Proofs:
12: Commit to k and xsign:
13: Ck = Commit(k).
14: Cxsign = Commit(xsign).
15: Generate proofs πk, πxsign .
16: Form Ciphertext:
17: ct = (ctk, ctxsign , R, Ck, Cxsign , πk, πxsign).
18: end procedure
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Algorithm 12 PIPE.Decrypt
1: procedure PIPE.Decrypt(pp, skf , ct, m)
2: Parse ct = (ctk, ctxsign , R, Ck, Cxsign , πk, πxsign).
3: Compute Hash e:
4: e = H(P ∥ R ∥ m).
5: Compute s Using Functional Decryption:
6: s = Dec(skf , ctk, ctxsign , πk, πxsign , e).
7: The decryption function internally:

• Performs Placeholder Verification:
• v = Verify(πk, πxsign).
• Computes s if v = 1:
• s = (k + xsign · e) mod q.
• Outputs s if verification succeeds; otherwise, fails.

8: Output Signature:
9: The signature is (R, s).

10: end procedure

3.5.8 Verification of the Schnorr Signature

After decryption, if δ = 1, the signature (R, s′) is valid. The verifier checks:

Algorithm 13 PIPE.Verify
1: procedure PIPE.Verify(P, R, s, m)
2: Compute Hash e:
3: e = H(P ∥ R ∥ m).
4: Verify Signature Equation:
5: Check if s ·G = R + e · P .
6: Accept or Reject:
7: If the equation holds, accept; else, reject.
8: end procedure

3.6 Verification of Zero-Knowledge Proofs on Bitcoin with PIPEs

3.6.1 Verifying FRI/LPC-based Proof Systems (e.g. Placeholder) via CAT PIPE

Embedding IPA-based proof system verification into DPVS-based QFE scheme enables the execution of
complex computations over encrypted data while preserving function privacy (the approach leverages the
compatibility between quadratic equations-reduceable KZG verification and the inner product computations
supported by the FH-MIPE scheme), as an example of a PIPE covenant, for the sake of the Placeholder
verification goal, CAT was chosen to be expressed via function-hiding functional encryption. This would
require to define, besides Schnorr signing procedure, an implementation of a circuit-expressed OP_CAT
as a predicate. As such an implementation is done, it is possible to split the Verify 7 to several steps
and to replace Merkle-tree verification-related operations of the hash-based commitment scheme with the
CAT PIPE transaction expectancy. This way an optimistic verification of commitment schemes can be
achieved.

3.6.2 Placeholder Verification as a Covenant

As the circuit which defines predicate within the chosen QFE scheme is possible to be arranged to
represent a Turing-complete computation, a much more complicated covenant can be constructed. For
example, the signing procedure can be prefixed/conditioned with the Placeholder verification procedure.
Considering that the resulting scheme supposes for the KZG-based Placeholder verificaton to happen
natively, one can reuse the mechanism in case Placeholder is being used directly. In case other proof
systems are being used, the recursion into Placeholder would be enough to embed the verification of those
into Bitcoin PIPEs framework.
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3.7 Workflow

A covenant defined via PIPE typical usage flow would usually require some planning to be done induce
more than just a single transaction, it would involve several steps:

1. An application developer develops a Bitcoin Script, which takes as an argument a signature and a
result of computations desired.

2. A user prepares a description of a computation necessary to be proven (e.g. a concatenation circuit
or a zkVM bytecode), performs such a piece of computation and proves it.

3. A user prepares a continuation transaction taking as an input the result of the execution equivalent
to missing opcode (e.g. TXHASH).

4. Such an input is being submitted to a service (external or self-hosted one) to generate a signature
for a transaction to happen.

5. A user spends/transfers operational data/assets to the address for which a signature is supposed
to be generated for (for which nobody except a PIPE has keys) to guarantee the continuation to
happen.

6. Once a continuation transaction signature is generated, a user takes it and submits it to a miner for
inclusion into the commit log.

User
Step 1: Develop Script
Bitcoin Script + Signature

Step 2: Prepare Proof
Circuit / zkVM Bytecode

Step 3: Continuation TX
Prepare Execution Input

External Service
Generates Signature

Step 4: Transfer Data
Send Assets to Address

Step 5: Submit TX
Miner Commits TX to Log

Bitcoin Node

Miner

Develop

Submit Input

Signature

Commit TX

Such a transaction sequence should be planned by a user or an application in advance though.

4 Conclusion

This paper proves that a function-hiding (DPVS-based quadrafic functional encryption (QFE) is
enough to introduce covenants for Bitcoin without any necessity for a protocol upgrade and express
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complex application-specific via those by conditionally signing Bitcoin transaction with Schnorr signature
if an IPA-based proof system verification (e.g. KZG-based Placeholder) completes successfully.

Having covenants implemented as Bitcoin PIPEs means:

1. Computation integrity verification happening outside of Bitcoin Script, while still being checked by
it.

2. Non-interactive protocol definition means no infrastructure is necessary to maintain liveness, which
improves security assumptions to native Bitcoin L1-level ones.

3. Setup procedure, due to the nature of the PIPE scheme, supposes the initial covenant deployer to
behave honest. This can be improved with traditional DKG (MPC-based trusted setup), so only
one participant out of N generating master key would be required to be honest.

4. Trivial covenants remain bytewise and verification wise more efficient.

In the same time, having Placeholder verification implemented as a Bitcoin PIPE covenant brings to
the table:

1. Full proof verification, which means not only commitments are being verified (like it is with an
OP_CAT case), but the verification also includes a circuit (gates) part into it which means security
assumptions improve to the strongest ones (no challenger oracle is required to be present within the
verification protocol).

2. Single-round ZKP verification on Bitcoin without any trust assumptions other than a trusted setup
assumption.
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